Group algebras and enveloping algebras with nonmatrix and semigroup identities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Algebras and Enveloping Algebras with Nonmatrix and Semigroup Identities

Let K be a field of characteristic p > 0. Denote by ω(R) the augmentation ideal of either a group algebra R = K[G] or a restricted enveloping algebra R = u(L) over K. We first characterize those R for which ω(R) satisfies a polynomial identity not satisfied by the algebra of all 2× 2 matrices over K. Then, we examine those R for which ω(R) satisfies a semigroup identity (that is, a polynomial i...

متن کامل

Group identities on the units of algebraic algebras with applications to restricted enveloping algebras

An algebra A is called a GI-algebra if its group of units A satisfies a group identity. We provide positive support for the following two open problems. 1. Does every algebraic GI-algebra satisfy a polynomial identity? 2. Is every algebraically generated GI-algebra locally finite? 2000Mathematics Subject Classification. 16R40; 16R50; 16U60; 17B35.

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

Differential Algebras on Semigroup Algebras

This paper studies algebras of operators associated to a semigroup algebra. The ring of differential operators is shown to be anti-isomorphic to the symmetry algebra and both are described explicitly in terms of the semigroup. As an application, we produce a criterion to determine the equivalence of A-hypergeometric systems. Conditions under which associated algebras are finitely generated are ...

متن کامل

Enveloping Algebras of Hom-lie Algebras

A Hom-Lie algebra is a triple (L, [−,−], α), where α is a linear self-map, in which the skew-symmetric bracket satisfies an α-twisted variant of the Jacobi identity, called the Hom-Jacobi identity. When α is the identity map, the Hom-Jacobi identity reduces to the usual Jacobi identity, and L is a Lie algebra. Hom-Lie algebras and related algebras were introduced in [1] to construct deformation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 1999

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927879908826645